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1. THE DYNAMICAL SYSTEM CALLED MAGNETOSPHERE about the magnetosphere

THE MAGNETOSPHERE . . .

I is a highly dynamic complex system
(Tsurutani et al., 1990;
Vassiliadis et al., 1990)

I manifests multiscale dynamics with
scale-invariant features
(Consolini, 2002; Uritsky et al., 2002)

I is in a far-from-equilibrium
near-critical state
(Chang et al., 1992)

The inherent multiscale and near criticality character of the magnetospheric dynamics
can give rise to some critical issues in the right forecast of the geomagnetic response
to solar wind changes, especially at the short timescales, that is, at timescales of the
order of few minutes that are strongly affected by the above phenomena.
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1. THE DYNAMICAL SYSTEM CALLED MAGNETOSPHERE about the magnetosphere

I The ring current activity is monitored by the low-latitude geomagnetic index known
as SYM-H

I The SYM-H index (measured in nT) is derived from the deviations in the horizontal
component of a network of near-equatorial geomagnetic
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1. THE DYNAMICAL SYSTEM CALLED MAGNETOSPHERE about the magnetosphere

I The auroral electrojets activity is monitored by the high-latitude geomagnetic
indices known as AE, AL and AU indices

I The auroral indices (measured in nT) are derived from the deviations in the
horizontal component of a network (>10) of high-latitude geomagnetic
observatories in the northern hemisphere

I They provide an estimation of the energy deposition in the auroral ionospheric
regions [Ahn et al.,1983]

I AE: represents the overall activity of the auroral electrojets (AU-AL)

I AL: quantifies the current intensity variations of the westward auroral electrojet,
which is mainly related to the tail activity

I AU: monitors the eastward electrojet, mainly related to the electric convection
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1. THE DYNAMICAL SYSTEM CALLED MAGNETOSPHERE about the magnetosphere

I The magnetosphere is not an isolated system but it is continuously coupled with
the solar wind

I Solar wind energy is transferred to the magnetosphere - ionosphere system and
an indicator of the solar wind energy input is the Akasofu epsilon parameter

ε =
4π
µ0

l2
0 vB2sin4(θc/2) [GW] (1)

µ0 is the permeability of free space
l0 = 7RE is the stand-off distance of the nose of the magnetosphere
v is the solar wind speed
B is the magnitude of the solar wind magnetic field
θc is the clock angle between By and Bz

I ε > 102 GW is likely to cause a substorm, during big storms ε > 104 GW
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2. THE MULTISCALE NATURE OF THE MAGNETOSPHERE the Empirical Mode Decomposition (EMD)

A MULTISCALE APPROACH: THE EMPIRICAL MODE DECOMPOSITION (EMD)

I A posteriori decomposition method useful for non-linear and non-stationary
datasets [Huang et al., 1998]

X (t) =
N∑

i=1

Ci (t) + r(t)

I Ci (t) is called Intrinsic Mode Function (IMF) and r(t) is the residue of the
decomposition

I An IMF is defined as a function that:
1. has symmetric upper and lower envelopes
2. the number of zero crossings and the number of extrema differing at most by one.

I An IMF can be written as Ci (t) = Ai (t) cos[φi (t)] where
Ai (t) is the instantaneous amplitude
φi (t) is the instantaneous phase through which an instantaneous frequency can be
derived (ωi (t) = dφi (t)/dt) as well as a characteristic timescale τi = 2π/ < ωi (t) >T

MAIN ADVANTAGES

I No ”a priori” assumptions on the basis functional form

I Finite and small number of empirical modes

I Non-stationary method with time-dependent frequencies
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2. THE MULTISCALE NATURE OF THE MAGNETOSPHERE the Empirical Mode Decomposition (EMD)

THE MAGNETOSPHERIC DYNAMICS . . .

I manifests a clear multiscale nature (Alberti et al., 2017)
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2. THE MULTISCALE NATURE OF THE MAGNETOSPHERE the Delayed Mutual Information (DMI)

THE DELAYED MUTUAL INFORMATION (DMI)

I How we can quantify the information shared between solar wind inputs and
magnetospheric outputs?

Considering a time delay ∆, it is possible to introduce a quantity capable of quantifying
the information shared by two sequences X(t) and Y(t) as

MI(X ,Y |∆) = H(X ) + H(Y )− H(X ,Y |∆) (2)

where

I H(X ) = −
∑

x∈X P(x) log P(x) (H(Y ) = −
∑

y∈Y P(y) log P(y)) is the Shannon
entropy

I H(X ,Y ) = −
∑

x∈X

∑
y∈Y P(x , y) log P(x , y) is the joint Shannon entropy
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2. THE MULTISCALE NATURE OF THE MAGNETOSPHERE DMI results

THE MAGNETOSPHERIC DYNAMICS . . .

I manifests a clear separation of timescales between the internal processes and the
direct driven ones, being the characteristic separation timescale of the order of
100 - 200 min (Kamide and Kokubun, 1996; Alberti et al., 2017)

SCALE-TO-SCALE DMI: ε→ AE
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2. THE MULTISCALE NATURE OF THE MAGNETOSPHERE DMI results

I this timescale separation is related to loading-unloading typical timescales
(Consolini and De Michelis, 2005) and also with typical timescales involved in the
nonlinear response of the Earth’s magnetosphere (Tsurutani et al., 1990)

I internal processes can be considered more reasonably as only triggered by
external solar wind changes (Alberti et al., 2017)
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3. THE CHAOTIC/COMPLEX MAGNETOSPHERE fractal dimensions

FRACTAL DIMENSIONS

I fractal dimensions quantify complexity (i.e., changing detail with changing scale)

I a fractal dimension does not have to be an integer

STRANGE ATTRACTORS

I an attractor is a set of numerical values toward which a system tends to evolve,
for a wide variety of initial conditions (a point, a curve, a manifold)

I mathematically is a subset A of the phase space characterized by the properties:
1. A is invariant: if a ∈ A then f (t , a) ∈ A, ∀t > 0;
2. A attracts an open set of initial conditions: there exists the basin of attraction B(A);
3. A is minimal: there is no proper subset of A having the first two properties.

I if A is a complicated set with a fractal structure, also exhibiting a sensitive
dependence of initial conditions, then it is known as a strange attractor
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3. THE CHAOTIC/COMPLEX MAGNETOSPHERE fractal dimensions

GENERALIZED DIMENSIONS Dq (q > 0) (Hentschel & Procaccia,
1983)

I 1918: Hausdorff proposed “to measure” fractals by using the Hausdorff
dimension≡fractal dimension

I 1980-1981: several authors (Grassberger, Procaccia, Takens, etc.) proposed only
three dimensions:

1. the box-counting dimension D0
2. the information dimension D1
3. the correlation dimension D2

I 1983: Hentschel and Procaccia proved that fractals and strange attractors are
characterized by an infinite number of generalized dimensions
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3. THE CHAOTIC/COMPLEX MAGNETOSPHERE related measures

KOLMOGOROV ENTROPY

I assuming to have a d−dimensional space partioned into cubes of size `d

I let be ∆t the sampling of a long time series {Xi}N
i=1

K2 = − lim
∆t→0

lim
`→0

lim
N→∞

1
N∆t

∑
i1,i2,...,iN

p(i1, i2, . . . , iN) log p(i1, i2, . . . , iN)

I p is the joint probability that X(t = ∆t) is in the box i1, X(t = 2∆t) is in the box i2,
. . . , X(t = N∆t) is in the box iN

I K2 is a measure of the rate of loss of information, since K−1
2 is the timescale over

which the behavior of the system can be accurately predicted, as well as it is a
measure of sensitivity of the system to changes in initial conditions

I if K2 is finite, the system is chaotic, while if K2 →∞, the system is nondeterministic

K2 VS. D2

I let m be the embedding dimension and ∆ the time delay to construct a
m−component state vector from the time series {Xi}N

i=1

K2 =
1

∆t
lim
`→0

log
C(`,m)

C(`,m + 1)
being C(`) =

1
N2

∑
i 6=j

Θ(`− |Xi − Xj |)
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3. THE CHAOTIC/COMPLEX MAGNETOSPHERE the dimensions of the magnetosphere

FROM A DYNAMICAL SYSTEM POINT OF VIEW . . .

I the overall magnetospheric dynamics has been described in terms of a
low-dimensional chaotic system (Vassiliadis et al., 1990)

I this view does not take into account the dynamical changes on different
timescales

3 Kolmogorov entropy and correlation dimension D2 are scale-dependent
7 forecast horizon for fast dynamics is ∼2 min⇒ we need to have high-dimensional

models (D2 ∼ 4− 5, Consolini et al., 2018)
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I this view does not take into account the dynamical changes on different
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3 Kolmogorov entropy and correlation dimension D2 are scale-dependent
7 forecast horizon for fast dynamics is ∼2 min⇒ we need to have high-dimensional
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3. THE CHAOTIC/COMPLEX MAGNETOSPHERE the dimensions of the magnetosphere

FROM A DYNAMICAL SYSTEM POINT OF VIEW . . .

I the overall magnetospheric dynamics has been described in terms of a
low-dimensional chaotic system (Vassiliadis et al., 1990)

I this view does not take into account the dynamical changes on different
timescales

3 Kolmogorov entropy and correlation dimension D2 are scale-dependent
7 forecast horizon for fast dynamics is ∼2 min⇒ we need to have high-dimensional

models (D2 ∼ 4− 5, Consolini et al., 2018)

I fast and slow dynamics are governed
by different fixed points, characterized
by a different number of degrees of
freedom

I the emerging scenario is that in
presence of a sort of topological
continuous phase transition for the
fluctuations at different timescales
(Chang et al., 1992, 2003; Consolini et
al., 2018)
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3. THE CHAOTIC/COMPLEX MAGNETOSPHERE the stochastic magnetosphere

A STOCHASTIC DESCRIPTION . . .

I The magnetosphere can be described in terms of a simple nonlinear system with
many dynamical states by means of a 1-D Langevin model

dx = −∂U(x)

∂x
dt + σdW (3)

where x is the state variable, U(x) is the state function, σ is the noise level and W is a
Wiener process.

I The associated Fokker-Planck equation reads

∂ρ(x , t)
∂t

=
∂

∂x
[
U ′(x)ρ(x , t)

]
+

1
2
σ2 ∂

2

∂x2 ρ(x , t) (4)

I its stationary solution is

ρ(x) ∼ exp
[
−2U(x)

σ2

]
→ U(x) = −σ

2

2
ln ρ(x) =

L∑
i=0

aix i (5)

I L is related to the number of states which is L/2
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3. THE CHAOTIC/COMPLEX MAGNETOSPHERE the stochastic magnetosphere

A STOCHASTIC DESCRIPTION . . .

3 the slow dynamics related to interplanetary changes is characterized by a
multi-state dynamics (Alberti et al., 2018)

3 the fast dynamics is characterized by a quasi-invariant single-state dynamics
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3 meta-stable states occur during disturbed periods

3 a single stable state is found during quiet periods at all timescales
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3. THE CHAOTIC/COMPLEX MAGNETOSPHERE a fractal description

A FRACTAL DESCRIPTION . . .
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I use time series over the 24th solar
cycle

I use a moving time window of length
2 days (Np = 2880, q = 3) to
evaluate

the Hurst exponent H
the Hölder exponent α0
corresponding to df

dα |α=α0 = 0
the singularity width
∆α = αmax − αmin

I a different pattern is clearly observed
between SYM-H and AE

I larger H and ∆α are found for AE

I singularities increase with
geomagnetic activity for SYM-H

I H also increases with geomagnetic
activity for SYM-H

I complexity changes during a storm?

I what about substorm-storm
relationships?
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TIPS & CONCLUSIONS

CONCLUSIONS

I a low-dimensional system cannot explain fast dynamics occuring on timescales
<200 min

I a high predictability has been found for the slow dynamics (>200 min) which is
directly driven from interplanetary changes (Alberti et al., 2017, 2018)

I new light on the framework of Space Weather forecasting:
7 all “deterministic” models (as based on neural networks) fail in reproducing the fast

dynamics which is the most critical for Space Weather purposes
3 it is quite reasonable to get a good forecast of that part of the magnetospheric

dynamics associated with the enhancement convection processes
3 the fast dynamics associated with the unloading mechanisms taking place in the CPS

and neutral sheet tail regions requires a deeper knowledge of the magnetospheric tail
conditions

TIPS

I more work will need to be done to determine some proxies for the tail dynamical
state with a time resolution of seconds

I the individuation and the construction of a proxy for the internal fast dynamics
should be considered as a must

I the fast dynamics is responsible for a lot of phenomena such as the generation of
the large ground-induced currents
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