Energetic particles in the heliosphere current understanding and challenges for space weather services

A. Papaioannou¹, R. Vainio²

¹IAASARS, National Observatory of Athens, Penteli, Greece ²Department of Physics and Astronomy, University of Turku, Turku, Finland

Energetic particle populations in space

- Corotating Interaction Regions (CIRs) (<u>only < 20 MeV/n ions</u>)
- Solar Energetic Particle (SEP) events (related to solar flares and CMEs)
- > Other populations of non solar origin, however strongly controlled by the large scale structure of the interplanetary magnetic field (i.e. modulation).
 - Galactic Cosmic Rays (GCRs)
 - Anomalous Cosmic Rays
 (ACRs) (only during solar minimum)
 - Jovian electrons

Credit: Adapted from M. Desai

16th European Space Weather Week (ESWW16)

Session 11 Spacecraft Operations

Energetic particle populations in space

Session 11 Spacecraft Operations

Solar Energetic Particle (SEP) events

The origin of SEP events

Impulsive Gradual > Since the 90s: Distinction of 2 classes of events: -Impulsive (small, frequent, presumably flare related) - Gradual (large, rare, presumably fast CME related) - The separation scheme is not that clear (mixed contributions, hybrid events) CME Shocks Flares Impulsive Gradual Flare-related CME-driven Shock Fe/O ~ 1 Fe/O ~ 0.1 ³He/⁴He ~ 0.1 - 1 ³He/⁴He <0.01 10 6 Q_{Fe} ~ 20 Q_{Fe} ~ 10-14 (B) Gradual (A) Impulsive W35 CME W59 Shock Shock W59 10 4 Particles/(cm² sr s MeV/n) W57 CME Narrow injection cone Broad injection cone W60 Shock 10 2 Radio type III Radio type II & IV * 0.2-2 MeV e 10 0 > Lower intensity, > Higher intensity, short duration 10 longer duration 10 -4 events \Rightarrow Significant 27 28 12 13 14 1982 August 15 16 17 18 19 21 23 25 \Rightarrow Less severe 989 October

Session 11 Spacecraft Operations Liège 22.11.2019

Credit: SOHO / NASA

ESA

- > The occurrence rate of SEP events is related to the solar cycle, however <u>short-term forecasting</u> is difficult:
 - "Strong flares and fast CMEs give ground to <u>SEP events</u>" but what does strong and fast really means ?
 - Prediction of the ICME/shock transit time to 1 AU and the importance of the possible *Energetic Storm Particles* (ESPs) spike is also complicated
- > However, correlations & dependencies between SEP occurrence rates, intensities and SF or CME properties have been found

⇒ Data Driven Methods

16th European Space Weather Week (ESWW16)

Session 11 Spacecraft Operations

Data-driven methods

Session 11 Spacecraft Operations

Data-driven methods

ESPERTA

Empirical model for Solar Proton Event Real Time Alert

> Time-integrated soft X-ray flux,
> Time-integrated radio intensity @ 1 MHz

Laurenza et al., Space Weather, 2009 Alberti et al., Astrophys. J, 2017 Laurenza et al., Astrophys. J, 2019

16th European Space Weather Week (ESWW16)

Session 11 Spacecraft Operations

Data-driven methods

UMASEP

- > Soft X-ray flux (derivative)
- > Proton flux at various energies (derivative)

Núñez, Space Weather, 2011; 2015; 2017

16th European Space Weather Week (ESWW16)

Session 11 Spacecraft Operations

Data-driven methods

REleASE

Relativistic Electron Alert System for Exploration

Posner, Space Weather, 2009

16th European Space Weather Week (ESWW16)

Session 11

Spacecraft Operations

- > In order to *improve* the **forecasting quality**, we need to <u>better understand</u> the **physical processes** that **govern the particle acceleration**, **injection** and **propagation**. In particular, we need to understand:
 - Acceleration and injection processes near the Sun
 - SEP interplanetary transport (diffusive models)

16th European Space Weather Week (ESWW16)

Session 11 Spacecraft Operations

Focused Transport

Aran et al., Charged Particle Transport in the Interplanetary Medium, ASSL, Springer, 2018

16th European Space Weather Week (ESWW16)

Session 11 Spacecraft Operations

Focused Transport

16th European Space Weather Week (ESWW16)

Session 11 Spacecraft Operations

SOLPENCO2

Aran et al., ESWW16, Session 8

http://sepem.eu/help/solpenco2_intro.html

16th European Space Weather Week (ESWW16)

Session 11

Spacecraft Operations

SOLPENCO2

June 6, 2000 SEP event

Aran et al., ESWW16, Session 8

http://sepem.eu/help/solpenco2_intro.html

16th European Space Weather Week (ESWW16)

Session 11

Spacecraft Operations

Beyond the Archimedean spiral IMF

MHD + transport modeling

> MHD background (<u>EUHFORIA code</u>) + 3D Particle Transport Modeling applied to a CIR

Wijsen et al., Astron. Astrophys., 2019

Spacecraft Operations

A novel hybrid tool

Coupling Data-driven + Physics based models

TDM today [!] @ 14:00 Mozane 789

16th European Space Weather Week (ESWW16)

Session 11 Spacecraft Operations

Conclusions

- > Outside the protective barrier of the magnetosphere the most important contribution to radiation risk comes from gradual SEP events
- > Forecasting models and tools progressively <u>become more reliable</u>. With the coupling of Data-driven and Physics based models being already achieved.

→ <u>Better understanding of the physical processes is needed</u> (acceleration, propagation, transport) for better **forecasting quality**.

⇒ Such understanding will be (hopefully) achieved by new missions during the upcoming years: Solar Orbiter, Parker Solar Probe, BepiColombo ...

Thank you for your attention

16th European Space Weather Week (ESWW16)

Session 11 Spacecraft Operations