

LAGRANGE

ESA's Space Weather Mission to L5

Stefan Kraft on behalf of the LAGRANGE team *Mission Study Manager* Space Weather Office Space Safety Programme Office

21/11/2019

ESA UNCLASSIFIED - For Official Use

European Space Agency

Enhanced Space Weather Monitoring System

L1

4

ş

D3S (Distributed SWE Sensor System)

Impact & State monitoring

Hosted payloads

LAGRANGE Missions

L5

European Space Agency

Objectives of ESA's SWE Monitoring System

Establish observational system that continuously monitors space weather

- From the Lagrangian points L1 and L5 (collaboration with US NOAA/NASA, others ...)
- In the proximity of the Earth (LEO, MEO, GEO)
- Ground based measurements

Advantages of L5 position

- Monitoring of space between Earth and Sun from a side view
- Increases our visibility of the Sun to 2/3 of the Sun's surface
- Activities on the Sun are seen about **4.5 days earlier** than from Earth

Some specifics of an observatory at L5

- Short latencies (15 min to 1 h) and continuous operation (24/7) to keep track of changes
- High reliability (0.75 @ 7.5 years) and high system availability (99%)
- Requires the development approach of an operational mission
- Science enabling through observations and 'high data rate' when possible
- Good heritage from science missions (SOHO, STEREO, Solar Orbiter, Cluster, etc)
- First mission has the character of an Explorer (first of its kind)

ESA UNCLASSIFIED - For Official Use

Stefan Kraft | ESOC | LGR Status ESWW 16| 21/11/2019 | Slide 3

EUV Imager (EUVI)

Single channel 19.5 nm Photospheric Magnetic Field Imager (PMI) Vector magnetograph (Zeeman line scanning) Compact Coronagraph (CCOR) ~3 to 22 solar radii Heliospheric Imager (HI) 4 to 70 degree

Remote/optical

LAGRANGE (L5)

X-ray Flux Monitor (XFM) Magnetometer (MAG) Plasma Analyser (PLA) Medium Energy Particle Spectrometer (MEPS) Radiation Monitor (RM)

Mission architecture

Provensional de la construir d

24/7 operation using ESTRACK

Data transmission via flexible file based data handling

Stefan Kraft | ESOC | LGR Status ESWW 16| 21/11/2019 | Slide 5

L5 space weather observatory key features

OHB

P

US EUVI

ThalesAlenia

Feature	Value	Comment
Mass, power	~2 t wet mass, <1.5 kW	Propellant large fraction
Delta-v	Between ~1100 and 1800 m/s	One or two revolutions
Dimensions	2.5 m x 2.5 m x 2.5 m	Medium sized S/C
Launcher	Ariane 6.2	Single passenger
Instruments	4 optical (200 kbps) 5 in-situ (10 kbps)	120 kg, 200 W
Magnetic cleanliness	Optimised for magnetometer	~5nT at sensor on boom
'Silent' observations 3-axes-stabilised	Pointing stability	Imaging performance
Clean environment	Thruster configuration optimised for observations	Plasma measurements
Continuous observation	24/7 - short latencies (as short as 15 minutes)	Also during Carrington event – optimisation
Orbit	Lagrange Point 5	1 AU distance from Earth ~1.5 Mkm eccentricity

ESA UNCLASSIFIED - For Official Use

Stefan Kraft | ESOC | LGR Status ESWW 16| 21/11/2019 | Slide 6

•

The set of th

European Space Agency

AIRBUS

LAGRANGE instruments

Instrument	Observation	Utilisation	Performance (latency/cadence)
Photospheric Magnetic field Imager (PMI)	Vector magnetic field mapping of the solar photosphere	Evolving magnetic complexity: input into solar wind modelling and activity forecast	Range: +/-4 kG Accuracy: 10 G, Zero 0.1G 1.2 arcsec / pixel, (40'/ 30')
EUV Imager (EUVI)	EUV solar disk imagery	Monitor solar active regions, coronal holes and on-disk signatures	19.5 nm 1.6 arcsec / pixel, (15′/5′)
Compact Coronagraph (CCOR)	Solar coronagraphy	Evolution and propagation of CMEs	3 to 22 Solar Radii 1 arcmin / pixel, (15'/5')
Heliospheric Imager (HI)	Heliospheric imagery	evolution and propagation of civies	4° to 70°, 2 arcmin / pixel, (50'/30')
Plasma Analyser (PLA)	Solar wind particle densities, temperatures and velocity		±22.5° x 45°, 5° angular 70 eV to 33 keV, (15′/1′)
Medium Energy Particle Spectrometer (MEPS)	Medium energetic particles	Solar wind monitoring, detection and characterisation of high-speed solar wind streams	30 kev/nuc up to 8 MeV/nuc (ions) 30 keV to 0.6 MeV(electroncs) 32/16 channels, 2x2 look directions, (15",1')
Magnetometer (MAG)	Interplanetary Magnetic Field vector-magnetic field		Absolute accuracy 1 nT (15'/1")
Radiation Monitor (RM)	Highly energetic particles	Solar energetic particle event detection and monitoring	2 MeV to 1 GeV (p+, ions), directional 100 keV to 8 MeV (electrons), (15'/1')
X-ray Flux Monitor (XFM)	Solar disk integrated X-ray flux	Detection and categorisation of solar flares	0.05 to 0.8 nm / 1.55 keV to 25 keV 512 channels, 400 eV @ 6 keV, (15'/1')

ESA UNCLASSIFIED - For Official Use

Stefan Kraft | ESOC | LGR Status ESWW 16| 21/11/2019 | Slide 7

+

= II 🛌 ## II = 🚝 = II II = = ## 🛶 💵 II = ## H 💥 🛀

Instrument to be procured individually

ESA UNCLASSIFIED - For Official Use

Stefan Kraft | ESOC | LGR Status ESWW 16| 21/11/2019 | Slide 9

•

European Space Agency

Data Handling System

Internal re-assessment performed at ESA 3 options recommended for further evaluation by industry

Optio n	Description	Trade-off result	Comment
#1-A	Baseline configuration at ISRR (IPCU - partially centralised)	Recommended	Trade-off result from Phase 0/A study.
#3-A	Common ICU+DPU design for all remote sensing instruments, with no central processing function.	Recommended	Typical architecture used in Science missions (JUICE evolution).
#3-B	Common I-CDPU design for all remote sensing instruments and in-situ instrument suite, with a centralized unit for image processing and compression (e.g. OBC).	Recommended	As #3-A Processing partly performed by platform

Distributed system anticipated

ESA UNCLASSIFIED - For Official Use

Stefan Kraft | ESOC | LGR Status ESWW 16| 21/11/2019 | Slide 10

*

Lagrange mission instrument status

ESA UNCLASSIFIED - For Official Use

Stefan Kraft | ESOC | LGR Status ESWW 16| 21/11/2019 | Slide 12

LAGRANGE Mission development schedule

+

THANK YOU

ESA LAGRANGE Instruments Team:

&

F. Ratti (instrument coordination), I. Biswas (PMI, optical), S. Terzo (in-situ, MAG, PLA), A. Lupi (I/F), A. Baselga Mateo (EUVI/COR), A. Martinez Carou (Mechanisms),
D. Rodgers (PLA), D. Steenari (DHS), G. Santin (RM, MEPS), J.P. Halain (EUVI/HI), J.P. Luntama (mission scientist), L. Visconti (cost), M. Solyga (thermal),
N. Bozic (structures), P. Jiggens (environment), N. Nelms (detectors/FEE), R. Franco (E2ES), V. Favia (RAMS)

> swe.ssa.esa.int www.esa.int

Other talks and posters

The EUV Imager on Lagrange	West, M et al. (talk)
In-situ particle instruments for enhanced space- weather monitoring	Kataria, D et al. (talk)
Design, development and testing of the RADEM and NGRM instruments	Hajdas, W et al. (talk)
The Remote-Sensing Package for the Lagrange Mission	Davies, J et al. (poster)
The COR and HI Instruments for the Lagrange Mission	Davies, J et al. (poster)
Space weather monitoring of the in-situ environment from the Sun-Earth Lagrange points	Rae, J et al. (poster)
LGR-RS End to End Performance Simulator Architectural Design and First Results	Grozea, I et al. (poster)

ESA UNCLASSIFIED - For Official Use

Stefan Kraft | ESOC | LGR Status ESWW 16| 21/11/2019 | Slide 15

+

= II 🕨 ## ## II = 🚝 = II II = = ## 🖬 II = ## II 🗰 ## 🗯