What is the intrinsic dimensionality of the OMNI data? A dimensionality reduction study

Jannis Teunissen CWI, Amsterdam

Collaborators: R. Dupuis, C. Shneider, E. Camporeale

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776262 (AIDA, www.aida-space.eu)

OMNI2 low-resolution data set

- 52 variables
 - IMF data
 - Solar wind parameters
 - Geomagnetic and solar activity indices
 - Energetic proton fluxes
- Hourly averages 1975 2019
- Non-physical variables removed (e.g. spacecraft ID)

[Credits: GSFC/SPDF and OMNIWeb] https://spdf.gsfc.nasa.gov/pub/data/omni/low_res_omni/

Data preprocessing

Step 1: Remove columns with too many missing values

Step 2: Remove rows with any missing value

Principal Component Analysis (PCA)

- Linear transformation
- Components in direction of most variance
- Normalization is important!
- Difficult to interpret here

Exploring data – Kp example

Autocorrelation

Fourier spectrum

Bz GSM

Plasma Flow Speed

Distribution of variables

Ranking variables by predictive power

- Linear model (y = Ax + b)
 - Feature: x_i
 - Target: $X = (X_1, X_2, ..., X_N)$
- Measure R² score

(components or average)

$$R^{2} = 1 - \frac{\langle (f(x) - y)^{2} \rangle}{\operatorname{Var}(y)}$$

\bar{R}^2	Тор 5	
0.188	Kp Which variables	5
0.167	ap index do they predict?	/
0.162	AL INDEX (KYOTO) sigma B	
0.160	PČ(N) index	
\bar{R}^2	Bottom 5	
0.0608	Plasma Beta	
0.0539	sigma phi V	
0.0525	Long. Angle of Aver. Field	
0.0387	Bx GSE, GSM	
0.0361	Plasma Flow Long. Angle	
0.0290	Plasma Flow Lat. Angle	

Correlation matrix

For a linear model
$$\operatorname{corr}(x, y) = \sqrt{R^2}$$

Without history

24h history

Linear vs non-linear models

Linear model

Neural network

Neural network 24h history Shown is $\sqrt{R^2}$

Summary

- PCA: ~17 variables for 90% of variance (with proper normalization)
- Autocorrelation times and strength of 27-day periodicities are spread out; no obvious clusters
- Correlation matrices and their non-linear generalization help to discover relations between variables

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776262 (AIDA, www.aida-space.eu)

