This poster has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 776262 (AIDA, www.aida-space.eu).

Characterizing magnetic reconnection using Gaussian Mixture Models on electron particle velocity distributions

R. Dupuis¹, M. V. Goldman², D. L. Newman², J. Amaya¹, and G. Lapenta¹ ¹ Center for mathematical Plasma Astrophysics, KU Leuven, Belgium ²Center for Integrated Plasma Studies, Colorado University, USA E-mail: romain.dupuis@kuleuven.be

Challenging detection from data

Reconnection plays **a crucial role in collisionless plasmas**. By breaking down the frozen-in magnetic fields, the magnetic energy is converted into kinetic, energy, and particle acceleration energy. Reconnection occurs at **various locations** such as laboratory plasma, solar atmosphere, or the magnetotail.

We present a method based on unsupervised machine learning to automatically identify and characterize regions of interest using particle velocity distributions as a signature pattern. A density estimation technique is applied to particle distributions provided by PIC simulations to study magnetic reconnection regions. The key components of the method involve: i) **a Gaussian Mixture Model** determining the presence of a given number of subpopulations within an overall population, and ii) a model selection technique with **Bayesian Information Criterion** to estimate the appropriate number of subpopulations. Thus, this method identifies automatically the presence of complex distributions, such as beams or other non-Maxwellian features, and can be used as a detection algorithm able to identify reconnection.

Magnetic reconnection

 $\theta_k\,$ k-th mean and covariance w_k weight of the k-th Gaussian the number of Gaussians

The vector Φ is computed as follow: Discretize density by a list of particles 2) The likelihood function **L** is maximized 3) Expectation-Maximization algorithm 4) No closed form, only local maximums

 $BIC = \ln(n)k - 2\ln(L)$ complexity goodness of fit

 k number of free parameters

 n number of particles

- It may be beams or electron subpopulation
- It can also reflects complex distributions (flat-top, Kappa, crescent shape, etc.)

Thermal energy as the second moment may be inappropriate if applied on several subpopulations : $\sum \left(\boldsymbol{V_p}-\langle \boldsymbol{V_p} \rangle\right)^2\Big|$ $E_{thermal} = \frac{1}{N_{\rm s}} \sum$

This process represents **one of the most important sources of particle acceleration in space.**

> $E^{(K)}_{thermal}$ relates to the thermal energy of the mixture. The ratio with the energy shows the reduction in thermal speed (heating vs acceleration)

$$
E_{drop} = \frac{E_{thermal}^{(K)}}{E_{thermal}}
$$

 $E_{dev}^{(n)}$ $E_{dev}^{(K)}$ is the weighted variance of the mixture means measuring. The ratio with the energy highlights the complexity of the distribution.

 (K)

$$
E_{dev} = \frac{E_{dev}^{(K)}}{E_{thermal}}
$$

Magnetic reconnection is studied with **in-situ measurements** (MMS mission [1]) and **simulations** [2].

> [1] Burch et al., "Magnetospheric multiscale overview and science objectives", Space Science Reviews, 2016

Gaussian Mixture Model

- particles per cell with a total data size nowadays reaching trillions of particles defined as **6D data**.
- Observations: **distributions** are available at specific time ranges defined manually by an operator or basic rules using to **fields data**.

Metrics have been developed from statistical moments of the distributions. One can cite **the measure of gyrotropy** [3] and the agyrotropy.

> A very narrow E_{dev} peak is observed around the EDR, suggesting complex distributions are present.

Our approach: using directly the full distribution

Diagnostic tool

Model selection problem: How to determine K in advance?

Bayesian Information Criterion (BIC) is maximized among a set of models

The value K **does not necessary correspond to the number of subpopulations**:

The second statistic moment on the mixture has additional terms:

$E^{(K)}_{thermal}$

[2] Goldman et al. 2016, "What can we learn about magnetotail reconnection from 2D PIC Harrissheet simulations?" Space Science Reviews, 199, 651

[3] Swisdak, "Quantifying gyrotropy in magnetic reconnection", Geophysical Research Letters

The probability density function is approximated by a sum of Gaussians \mathcal{N} :

$$
p(\boldsymbol{x}|\boldsymbol{\Phi}) = \sum_{k=1}^{K} w_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\theta_k})
$$

$$
\boldsymbol{\Phi} = [w_1, \dots, w_K, \boldsymbol{\theta_1}, \dots, \boldsymbol{\theta_K}]
$$

Several regions are identified. The inflow is characterized by a large region of high value. The EDR and the outflow show low values, meaning the mixture extend is reduced compared to the second moment. A ring is also observed near the O-point.

Typical topological boundaries are highlighted by E_{dev} , in particular at the outflow, near the separatrix and at the limit far from the O-point.

The above distributions refer to the labels in the first figure of the section. They illustrate various behaviors, such as a Gaussian core associated with a surrounding halo (A and B) or an anisotropic heavy-tail distribution (E).

<https://arxiv.org/abs/1910.10012>

