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ABSTRACT

Ultra-low frequency (ULF) magnetospheric plasma waves play a key role in the dynamics of the Earth’s magnetosphere and, therefore, their importance in Space Weather
studies is indisputable. Magnetic field measurements from recent multi-satellite missions (e.g. Cluster, THEMIS, Van Allen Probes and Swarm) are currently advancing our
knowledge on the physics of ULF waves. In particular, Swarm satellites, one of the most successful mission for the study of the near-Earth electromagnetic environment, have
contributed to the expansion of data availability in the topside ionosphere, stimulating much recent progress in this area. Coupled with the new successful developments in
artificial intelligence (AI), we are now able to use more robust approaches devoted to automated ULF wave event identification and classification. The goal of this effort is to
use a deep learning method in order to classify ULF wave events using magnetic field data from Swarm. We construct a Convolutional Neural Network (CNN) that takes as
input the wavelet spectra of the Earth’s magnetic field variations per track, as measured by each one of the three Swarm satellites, and whose building blocks consist of two
convolution layers, two pooling layers and a standard NN layer, aiming to classify ULF wave events in four different categories: 1) Pc3 wave events (i.e., frequency range 20-100
MHz), 2) non-events, 3) false positives, and 4) plasma instabilities. Our primary experiments show promising results, yielding successful identification of more than 95%
accuracy. We are currently working on producing larger training/test datasets, by analyzing Swarm data from the mid-2014 onwards, when the final constellation was formed,
aiming to construct a dataset comprising of more than 50,000 wavelet image inputs for our network.

Future Work
• Introduce regularization in our model in order to avoid high

variance
• Improve its accuracy by spending more time tuning the

hyperparameters
• Re-training with larger dataset by analyzing Swarm data from

the mid-2014 onwards, necessary for optimal performance

Data and Methodology

• Data from Swarm magnetic field measurements (total magnitude, extracted from Swarm Magnetic Field
Vector, NEC frame, 1s sampling rate), from February to April of the year 2015.

• Segmented into mid-latitudinal tracks (i.e., -45 to +45 deg. latitude), in order to exclude the influence of
polar FACs that might affect the measurements.

• Filtered using a high-pass Butterworth filter with a cutoff frequency of 16 mHz.
• Wavelet analysis on the produced time-series. The wavelet spectrum images are then used as the input

features in the CNN model.
• Training and test dataset, by dividing the Swarm tracks in 4 classes, namely Pc3 (20 - 100 mHz) ULF wave

events, non-ULF signals i.e., background noise without significant wave activity, False Positives (FP), e.g.,
anomalous signals due to spikes, discontinuities, etc., and Plasma Instabilities i.e., events that are
influenced or caused by Equatorial Spread F (ESF) irregularities (Stolle et al., 2006; Park et al., 2013) or in
general by other, unclassified anomalies in the ionosphere, in near-equatorial, night-side areas.

• CNN model, consisting of 2 convolution layers, 2 pooling layers and 2 fully connected layers.
- Convolution Layer: calculates the convolution of the input image with a “filter”
- Pooling Layer: reduces the size of the image
- Flattening Process: converts the final multidimensional image to a vector of input parameters

• The Swarm data analysis was implemented using the framework of the Matlab programming environment,
while the CNN model was implemented using Python and its open-source platform TensorFlow.

References.
G. Balasis et al., J. Space Weather Space Clim. 2019, 9, A13, https://doi.org/10.1051/swsc/2019010
Stolle C, Lühr H, Rother M, Balasis G. 2006. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J Geophys Res 111: A02304. DOI: 10.1029/2005JA011184.
Park J, Noja M, Stolle C, Lühr H. 2013. The Ionospheric Bubble Index deduced from magnetic field and plasma observations onboard Swarm. Earth Planets Space 65: 1333–1344.

Fig. 2. Schematic representation of the complete deep CNN model, with four layers in total, where the first two consist of a convolution and a pooling process while the last two are fully
connected layers. The final fully connected layer results in 4 neurons in the output layer (equals to the number of classes), which then get passed to a Softmax activation function.

Fig. 3. The CONV1 layer representation: convolves W1’s filters on x, adds biases b1, and

calculates the ReLU activation function over z1, where 𝑧[1] = 𝑊[1]𝑎[0] + 𝑏[1] and 𝑎[1] = g(𝑧[1])

= ReLU(𝑧[1]), with weights W and biases b to be the parameters of our network.

Fig. 4. Representation of the
pooling layer: uses a window
of size (f, f) and strides of size
(s, s) to perform max pooling
over each window. Filter size
f and stride s are the hyper-
parameters of our network.

Fig. 3. Plot of the cost function vs the number
of epochs of the optimization loop. After 100
epochs of training of the model, the accuracy
of the test set is equal to 87.5%

Fig. 1. Examples of the four categories of our classification
problem. From upper left: Event, Non-Event, False Positive, and
Plasma Instabilities.

“Event” “Non-Event”

“Plasma Instabilities”“False Positive”

Events 700

Non-Events 680

Plasma Instabilities 550

False Positives 100

Training examples 1624

Test examples 406

Total 2030

Table 1. Number of examples for each
category. The total number of examples is
2030, of which the 80% was used for the
training and the 20% for the test set.

Conclusions

• The CNN model shows promising results, recognizing ULF
wave events with almost 90% accuracy on the test set

• Due to the large number of parameters of the model, it is
crucial to build much larger training/test sets, of at least
50,000 input features
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