DETECTING MAGNETOSPHERIC AND IONOSPHERIC CURRENT SYSTEMS PATTERNS FROM SWARM OBSERVATIONS

T. ALBERTI¹, F. Giannattasio², P. De Michelis², G. Consolini¹

¹ INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy ² Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

e-mail: tommaso.alberti@inaf.it

16th European Space Weather Week

Liège, Belgium

November 18-22, 2019

A LOOK INSIDE THE MAGNETOSPHERE

- Enhanced westward ring current causes a world-wide depression of the geomagnetic horizontal component ⇒ geomagnetic storms ⇒ disturbed period
- ► Field aligned currents are responsible for the magnetosphere-ionosphere coupling ⇒ geomagnetic substorms

A LOOK INSIDE THE IONOSPHERE

- Auroral electrojets enhancements lead to changes in the auroral oval region
 ⇒ geomagnetic substorms
- Solar quiet Sq current located at mid-latitude is driven by solar radiation ⇒ quiet period

SWARM SATELLITES

- Three satellites (Alpha, Bravo and Charlie) placed in two different polar orbits: A and C fly side by side at an altitude of 460/470 km, B at an altitude of 520/530 km
- Main objectives of the mission: geomagnetic field studies, Earth core dynamics, geodynamo processes, currents flowing in the magnetosphere and ionosphere
- We used Level 1b low resolution (1 Hz) vector magnetic field data recorded onboard Swarm A from 1 April 2014 to 31 March 2016 [Friis-Christensen et al., 2008]

GEOMAGNETIC FIELD COMPONENTS

- Level-1b low resolution (1 Hz) vector magnetic field data recorded on Swarm A satellite during a period of two years from 1 April 2014 to 31 March 2016
- vertical component of the geomagnetic field (B₂) at low- and mid-latitudes during periods characterized by very low geomagnetic activity levels with AE < 80 nT and -10 nT <SYM-H< 5 nT</p>
- we removed the internal geomagnetic field from the original data by using CHAOS-6 model

- ▶ ranges between -20 and 20 nT and a two-lobe structure is clearly visible
- consistent with the solar quiet (Sq) daily variation of the geomagnetic field due to electric currents flowing in the ionosphere
- it generates an induced magnetic field directed outward (inward) in the Northern (Southern) Hemisphere
- thus it is revealed by Swarm observations as a decrease (increase) of the geomagnetic field in the Northern (Southern) Hemisphere

EMPIRICAL ORTHOGONAL FUNCTION (EOF) ANALYSIS

- > a decomposition technique for both univariate and multivariate data
- b the set of observations {s(t)}|_{t∈T} = {s₁(t), s₂(t), ..., s_n(t)} is converted into a set of values of linearly uncorrelated variables, i.e., the PCs Φ_l(t), as

$$\{\mathbf{s}(t)\}|_{t\in T} = \sum_{l=1}^{n} \Phi_{l}(t) \mathbf{L}_{l}^{\mathrm{T}}$$

- ▶ $\mathbf{L}_{l}^{\mathrm{T}}$ the transpose of the *l*-th eigenvector of the covariance matrix of $\{\mathbf{s}(t)\}|_{t \in T}$ obtained as $\mathbf{C} = \{\mathbf{s}\}^{\mathrm{T}}\{\mathbf{s}\}$
- ▶ the decomposition is complete and orthogonal (by construction)
- ► the normalized eigenvalue
 e_I captures the partial variance (i.e., the energy content) of the *I*-th principal component
- summaryzing, the main steps of the EOF method are:
- 1. to organize data as a matrix (by using the embedding theorem for univariate data);
- 2. to evaluate the covariance matrix of data (embedded data for univariate data);
- 3. to diagonalize the covariance matrix to find eigenvectors and eigenvalues;
- 4. to project data on eigenvector directions to find the uncorrelated variables, i.e., the principal components.

• L_1 does not reproduce the S_q daily variation

 \blacktriangleright L₂ is characterized by a two-vortex like structure, in agreement with the S_q

- ▶ L_3 is characterized by a symmetric pattern in λ_{qd} , with no LT symmetry
- ► $L_4 L_6$ show striped patterns, the remaining components (not shown) can be attributed to the noise

T. ALBERTI

MULTIVARIATE EMPIRICAL MODE DECOMPOSITION (MEMD)

- ▶ it works directly in the data domain rather than in an associate one
- ► the set of observations {s(t)}|_{t∈T} = {s₁(t), s₂(t), ..., s_n(t)} is decomposed into a set of nonlinear multivariate empirical modes {c_k(t)}|_{t∈T} as

$$\{\mathbf{s}(t)\}|_{t\in T} = \sum_{k=1}^{N} \{\mathbf{c}_{k}(t)\}|_{t\in T} + \{\mathbf{r}(t)\}|_{t\in T}$$

- ► the set of *n*-dimensional embedded patterns {c_k(t)}|^{i=1,...,N}_{t∈T} empirically forms decomposition basis and {r(t)}|_{t∈T} is the decomposition residue
- MEMD modes empirically and locally satisfy orthogonal and completeness properties
- ► the energy content e_k of each MEMD mode can be evaluated as $\langle \{ \mathbf{c}_k(t) \} |_{t \in T}, \{ \mathbf{c}_k(t) \} |_{t \in T} \rangle$ and capture the partial variance
- summaryzing, the main steps of the MEMD method are:
- 1. to identify the local extrema;
- 2. to separately interpolate both local maxima and minima by using a cubic spline;
- 3. to obtain the mean envelope e_m from maxima and minima interpolations;
- 4. to evaluate an Intrinsic Mode Function.

T. ALBERTI

- no fixed number and spatial scales of detected IMFs
- c_1 , c_2 and c_3 : range ± 2 nT, spatial structures similar to latitudinal ribbons
- ▶ c_4 and c_5 : range from ~ ±10 nT, spatial structures of the main S_q current
- ► the residual: range ~ ±20 nT, inward (outward) in the Northern (Southern) Hemisphere ⇒ magnetospheric ring current

T. ALBERTI

Comparison between EOF and MEMD results for detecting the S_q variability

Comparison between EOF and MEMD results for detecting the S_q variability

T. ALBERTI

CONCLUSIONS

- MEMD method can help in the interpretation of the external magnetic field signals better than EOF method
- the first three modes appear in form of spurious North-South patterns
- ► c₄ and c₅ describe the effects on the geomagnetic field of the electric currents flowing in the ionosphere
- the residual is due to the electric currents flowing in the magnetosphere and describes the effect of the magnetospheric ring current

PERSPECTIVES

- MEMD method can help with the interpretation of the external magnetic field signals coming from the Swarm magnetic measurements
- It gives new insights into the analysis of the different sources responsible for the geomagnetic field of external origin
- It can be used as a good filter permitting to separate the ionospheric signal from both the magnetospheric one and the artefacts introduced by unmodeled internal contributions