A new method for measuring relative abundances in the solar corona

SD0 Science Workshop 2018

Natalia ZAMBRANA PRADO

Éric BUCHLIN

Institut d'Astrophysique Spatiale, Orsay, France

The FIP effect

« FIP bias » :
$$f_X = rac{Ab_X^{\,corona}}{Ab_X^{\,photosphere}}$$

- ★ FIP : First Ionization Potential
- ★ Ab_x^{region} : elemental abundance relative to hydrogen in a given region of the solar atmosphere

The FIP effect

« FIP bias » :
$$f_X = rac{Ab_X^{\,corona}}{Ab_X^{\,photosphere}}$$

- ★ FIP : First Ionization Potential
- ★ Ab_x^{region} : elemental abundance relative to hydrogen in a given region of the solar atmosphere

The FIP effect

« FIP bias » :
$$f_X = rac{Ab_X^{\,corona}}{Ab_X^{\,photosphere}}$$

- ★ FIP : First Ionization Potential
- ★ Ab_x^{region} : elemental abundance relative to hydrogen in a given region of the solar atmosphere

« FIP bias » frozen in the corona

The FIP effect can allow us to trace back the source of heliospheric plasma

In the coronal approximation, the radiance of the transition line from level i to j of ion X^{+m} is :

$$I_{X^{+m},\,i
ightarrow j} = Ab_X^{\,corona}\,\int C_{X^{+m},\,i
ightarrow j}(n_e,T)\,DEM\,dT$$

In the coronal approximation, the radiance of the transition line from level i to j of ion X^{+m} is :

$$I_{X^{+m},\,i
ightarrow j}= egin{aligned} Ab_X^{\,\,corona} \int C_{X^{+m},\,i
ightarrow j}(n_e,T) \, DEM \, dT \end{aligned}$$

Coronal abundance of element X

In the coronal approximation, the radiance of the transition line from level i to j of ion X^{+m} is :

$$I_{X^{+m},\,i
ightarrow j}= egin{array}{c} Ab_X^{\,corona} \int C_{X^{+m},\,i
ightarrow j}(n_e,T) DEM\,dT \end{array}$$

Coronal abundance of element X Contribution function

In the coronal approximation, the radiance of the transition line from level i to j of ion X^{+m} is :

$$I_{X^{+m}, i \to j} = Ab_X^{corona} \int C_{X^{+m}, i \to j}(n_e, T) DEM dT$$
Coronal abundance
of element X
Contribution
function
Measure

In the coronal approximation, the radiance of the transition line from level i to j of ion X^{+m} is :

$$I_{X^{+m}, i
ightarrow j} = Ab_X^{corona} \int C_{X^{+m}, i
ightarrow j} (n_e, T) DEM dT$$

Coronal abundance Contribution Differential Emission Measure

Simplified notation :
$$I_{X,\,ij}=f_X^{\,bias}A_X^{
m ph}\langle C_{X,\,ij},{
m DEM}
angle$$

$$I_{X,\,ij}=f_X^{\,bias}A_X^{
m ph}\langle C_{X,\,ij},{
m DEM}
angle$$

$$egin{aligned} &I_{X,\,ij}=f_X^{\,bias}\,A_X^{
m ph}\,\langle C_{X,\,ij},{
m DEM}
angle\ &rac{f_{X_{
m LF}}^{\,bias}}{f_{X_{
m HF}}^{\,bias}}=rac{I_{
m LF}}{I_{
m HF}}igg(rac{A_X^{
m ph}}{A_{X_{
m HF}}^{
m ph}}rac{\langle C_{
m LF},\ \ {
m DEM}
angle}{\langle C_{
m HF},\ \ {
m DEM}
angle}igg)^{-1} \end{aligned}$$

$$egin{aligned} &I_{X,\,ij}=f_X^{\,bias}\,A_X^{
m ph}\,\langle C_{X,\,ij},{
m DEM}
angle\ &rac{f_{X_{
m LF}}^{\,bias}}{f_{X_{
m HF}}^{\,bias}}=rac{I_{
m LF}}{I_{
m HF}}igg(rac{A_X^{
m ph}}{A_{X_{
m HF}}^{
m ph}}igg\langle C_{
m LF},\,\,{
m DEM}
angleigg)^{-1} \end{aligned}$$

Two Line Ratio

- Fast and simple
- Easy to automate
- Inaccurate unless contribution functions match perfectly

$$I_{X,\,ij}=f_X^{\,bias}A_X^{
m ph}\langle C_{X,\,ij},{
m DEM}
angle$$

$$rac{f_{X_{
m LF}}^{bias}}{f_{X_{
m HF}}^{bias}} = rac{I_{
m LF}}{I_{
m HF}} egin{pmatrix} A_{X_{
m LF}}^{
m ph} \ R_{X_{
m HF}}^{
m ph} \ R_{X_{
m HF}}^{
m observed} \ R_{
m HF}^{
m observed} \ R$$

Two Line Ratio

- Fast and simple
- Easy to automate
- Inaccurate unless contribution functions match perfectly

Following DEM inversion

- Inverse problem difficult to constrain
- Complicated to automate
 - More accurate

What we have

The game plan

What we want to do

★ Create accurate FIP bias maps systematically and semi-automatically

What we have

Spectroscopic observations

The game plan

How

A new FIP bias measuring method with:

- ★ No DEM Inversion
- ★ Optimized linear combinations of spectral lines

What we want to do

★ Create accurate FIP bias maps systematically and semi-automatically

What we have

Spectroscopic observations

The game plan

How

A new FIP bias measuring method with:

- ★ No DEM Inversion
- ★ Optimized linear combinations of spectral lines

What we want to do

- ★ Create accurate FIP bias maps systematically and semi-automatically
- ★ Re-analyze past observations
- ★ Design observations : which lines should we use ?

Spectral lines of **low FIP** elements

$$\mathscr{I}_{\mathrm{LF}} \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; rac{I_i}{A_i^{\mathrm{ph}}} \ \mathscr{C}_{\mathrm{LF}}(T) \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; C_i(T)$$

Spectral lines of high FIP elements

$$\mathscr{I}_{ ext{HF}} \equiv \sum_{i \in (ext{HF})} eta_i \; rac{I_i}{A_i^{ ext{ph}}}$$

$$\mathscr{C}_{
m HF}(T)\equiv \sum_{i\in({
m HF})}eta_i \; C_i(T) \; ,$$

Spectral lines of **low FIP** elements

$$\mathscr{I}_{\mathrm{LF}} \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; rac{I_i}{A_i^{\mathrm{ph}}} \ \mathscr{C}_{\mathrm{LF}}(T) \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; C_i(T)$$

Spectral lines of high FIP elements

$$\mathscr{I}_{
m HF}\equiv {\displaystyle\sum_{i\in({
m HF})}}eta_i\;{\displaystyle rac{I_i}{A_i^{
m ph}}}$$

$$\mathscr{C}_{
m HF}(T)\equiv \sum_{i\in({
m HF})}eta_i\,\,C_i(T)$$

The relative FIP bias is $\frac{f_{\rm LF}^{\,bias}}{f_{\rm HF}^{\,bias}} = \frac{\mathscr{I}_{\rm LF}}{\mathscr{I}_{\rm HF}} \left(\frac{\langle \mathscr{C}_{\rm LF}, {\rm DEM} \rangle}{\langle \mathscr{C}_{\rm HF}, {\rm DEM} \rangle}\right)^{-1}$

Spectral lines of low FIP elements

$$\mathscr{I}_{\mathrm{LF}} \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; rac{I_i}{A_i^{\mathrm{ph}}} \ \mathscr{C}_{\mathrm{LF}}(T) \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; C_i(T)$$

Spectral lines of high FIP elements

$$\mathscr{I}_{
m HF}\equiv {\displaystyle\sum_{i\in({
m HF})}}eta_i\;{\displaystyle rac{I_i}{A_i^{
m ph}}}$$

$$\mathscr{C}_{
m HF}(T)\equiv \sum_{i\in({
m HF})}eta_i\,\,C_i(T)$$

The relative FIP bias is $\frac{f_{\rm LF}^{bias}}{f_{\rm HF}^{bias}} = \frac{\mathscr{I}_{\rm LF}}{\mathscr{I}_{\rm HF}} \left(\frac{\langle \mathscr{C}_{\rm LF}, {\rm DEM} \rangle}{\langle \mathscr{C}_{\rm HF}, {\rm DEM} \rangle} \right)^{-1} \approx 1$

Spectral lines of **low FIP** elements

$$\mathscr{I}_{\mathrm{LF}} \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; rac{I_i}{A_i^{\mathrm{ph}}} \ \mathscr{C}_{\mathrm{LF}}(T) \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; C_i(T)$$

Spectral lines of high FIP elements

$$\mathscr{I}_{
m HF}\equiv {\displaystyle\sum_{i\in({
m HF})}}eta_i \; {\displaystyle rac{I_i}{A_i^{
m ph}}}$$

$$\mathscr{C}_{
m HF}(T)\equiv \sum_{i\in({
m HF})}eta_i\,\,C_i(T)$$

The relative FIP bias is
$$\frac{f_{\rm LF}^{bias}}{f_{\rm HF}^{bias}} = \frac{\mathscr{I}_{\rm LF}}{\mathscr{I}_{\rm HF}} \left(\frac{\langle \mathscr{C}_{\rm LF}, {\rm DEM} \rangle}{\langle \mathscr{C}_{\rm HF}, {\rm DEM} \rangle} \right)^{-1} \approx 1$$

We minimize $\phi(\alpha, \beta) = \sqrt{\sum_{j \in ({\rm DEM}_j)_j} \left| \frac{\langle \mathscr{C}_{\rm LF}, {\rm DEM}_j \rangle}{\langle \mathscr{C}_{\rm HF}, {\rm DEM}_j \rangle} - 1 \right|^2}$ for a set of reference DEMs

Tests on uniform FIP bias maps

Tests on uniform FIP bias maps

Tests on uniform FIP bias maps

Contribution functions of the spectral lines that we use

Sources of error - remaining non uniformity

Sources of error

Specific to the LCR method :

- Minimized cost function is not equal to zero.
- The DEMs in the map are different from the ones we used for the optimization.
- Mixing of elements with different
 FIP biases

Sources of error

Specific to the LCR method :

- Minimized cost function is not equal to zero.
- The DEMs in the map are different from the ones we used for the optimization.
- Mixing of elements with different
 FIP biases

Other sources of error :

- ★ Radiometry
- ★ Atomic physics
- ★ Radiative transfer

Application of the LCR method to spectroscopic observations of a sigmoidal anemone-like Active Region inside an equatorial Coronal Hole, previously studied in Baker et al. (2013).

Application of the LCR method to spectroscopic observations of a sigmoidal anemone-like Active Region inside an equatorial Coronal Hole, previously studied in Baker et al. (2013).

Following DEM	Linear
inversion	combinations
$f_{ m Si}$	$f_{ m Si}$ & Fe
$\overline{f_{ m S}}$	$\overline{f_{ m S}}$

Application of the LCR method to spectroscopic observations of a sigmoidal anemone-like Active Region inside an equatorial Coronal Hole, previously studied in Baker et al. (2013).

Data courtesy of D. Baker

Application of the LCR method to spectroscopic observations of a sigmoidal anemone-like Active Region inside an equatorial Coronal Hole, previously studied in Baker et al. (2013).

Following DEM inversion	Linear combinations
$f_{ m Si}$	$f_{ m Si}$ & Fe
$\overline{f_{ m S}}$	$f_{ m S}$

 Similar structures with enhanced or depleted relative FIP bias in both maps.

Data courtesy of D. Baker

Conclusions

- ★ The tests show that the LCR method performs well, and does not require prior DEM inversion.
- ★ The LCR method could be useful to re-analyze past observations that were not intended for abundance measurements.
- ★ It could help us prepare future observations.

Conclusions

- ★ The tests show that the LCR method performs well, and does not require prior DEM inversion.
- ★ The LCR method could be useful to re-analyze past observations that were not intended for abundance measurements.
- ★ It could help us prepare future observations.

Future work

- ★ Assessment of linear combinations of lines for the UV spectrometer SPICE on board Solar Orbiter to help connect remote and in-situ measurements from SWA/HIS.
- ★ Could become a SPICE level 3 data product.

Thank you for listening

